skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mittal, Prateek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep learning techniques have enabled vast improvements in computer vision technologies. Nevertheless, these models are vulnerable to adversarial patch attacks which catastrophically impair performance. The physically realizable nature of these attacks calls for certifiable defenses, which feature provable guarantees on robustness. While certifiable defenses have been successfully applied to single-label classification, limited work has been done for multi-label classification. In this work, we present PatchDEMUX, a certifiably robust framework for multi-label classifiers against adversarial patches. Our approach is a generalizable method which can extend any existing certifiable defense for single-label classification; this is done by considering the multi-label classification task as a series of isolated binary classification problems to provably guarantee robustness. Furthermore, in the scenario where an attacker is limited to a single patch we propose an additional certification procedure that can provide tighter robustness bounds. Using the current state-of-the-art (SOTA) single-label certifiable defense PatchCleanser as a backbone, we find that PatchDEMUX can achieve non-trivial robustness on the MS-COCO and PASCAL VOC datasets while maintaining high clean performance 
    more » « less
  2. Data valuation, a growing field that aims at quantifying the usefulness of individual data sources for training machine learning (ML) models, faces notable yet often overlooked privacy challenges. This paper studies these challenges with a focus on KNN-Shapley, one of the most practical data valuation methods nowadays. We first emphasize the inherent privacy risks of KNN-Shapley, and demonstrate the significant technical challenges in adapting KNN-Shapley to accommodate differential privacy (DP). To overcome these challenges, we introduce TKNN-Shapley, a refined variant of KNN-Shapley that is privacy-friendly, allowing for straightforward modifications to incorporate DP guarantee (DP-TKNN-Shapley). We show that DP-TKNN-Shapley has several advantages and offers a superior privacy-utility tradeoff compared to naively privatized KNN-Shapley. Moreover, even non-private TKNN-Shapley matches KNN-Shapley's performance in discerning data quality. Overall, our findings suggest that TKNN-Shapley is a promising alternative to KNN-Shapley, particularly for real-world applications involving sensitive data. 
    more » « less